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Abstract: This paper applies the Hafner and Herwartz (2006) approach to the analysis of multivariate GARCH 

models using volatility impulse response analysis. The data set features ten years of daily returns series for the 

New York Stock Exchange Index and the FTSE 100 index from the London Stock Exchange, from 3 January 

2005 to 31 January 2015. This period captures both the Global Financial Crisis (GFC) and the subsequent 

European Sovereign Debt Crisis (ESDC). The attraction of the Hafner and Herwartz approach is that it involves 

a novel application of the concept of impulse response functions, tracing the effects of independent shocks on 

volatility through time, while avoiding typical orthogonalization and ordering problems. Volatility impulse 

response functions (VIRF) provide information about the impact of independent shocks on volatility. Hafner 

and Herwartz’s VIRF extends a framework provided by Koop et al. (1996) for the analysis of impulse responses. 

This approach is novel because it explores the effects of shocks to the conditional variance, as opposed to the 

conditional mean. Hafner and Herwartz use the fact that GARCH models can be viewed as being linear in the 

squares, and that multivariate GARCH models are known to have a VARMA representation with non-Gaussian 

errors. They use this particular structure to calculate conditional expectations of volatility analytically in their 

VIRF analysis. A Jordan decomposition of Σt is used to obtain independent and identically defined (iid) 

innovations. A general issue in the approach is the choice of baseline volatilities. VIRF is defined as the 

expectation of volatility conditional on an initial shock and on history, minus the baseline expectation that 

conditions on history. This makes the process endogenous, but the choice of the baseline shock within the data 

set makes a difference. We explore the impact of three different shocks, the first marking the onset of the GFC, 

which we date as 9 August 2007 (GFC1). This began with the seizure in the banking system precipitated by 

BNP Paribas announcing that it was ceasing activity in three hedge funds that specialised in US mortgage debt. 

It took a year for the financial crisis to come to a head, but it did so on 15 September 2008, when the US 

government allowed the investment bank Lehman Brothers to go bankrupt (GFC2). The third shock is 9 May 

2010, which marked the point at which the focus of concern switched from the private sector to the public sector.  

A further contribution of this paper is the inclusion of leverage, or asymmetric effects. Our modelling is 

undertaken in the context of a multivariate GARCH model featuring pre-whitened return series, which are then 

analysed using both BEKK and diagonal BEKK (DBEKK) models with the t-distribution. A key result is that 

the impact of negative shocks is larger, in terms of the effects on variances and covariances, but shorter in 

duration, in this case a difference between three and six months, in the context of our particular return series.   
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1. INTRODUCTION 

 

The similarities between GARCH and VARMA-type models provide a foundation for the approach to 

generalize impulse response analysis, as introduced by Sims (1980), to the analysis of shocks in 

financial volatility. Previous alternative approaches in the literature have been made towards tracing 

the impact of various types of shocks through time (see, for example, Koop et al. (1996), Engle and 

Ng, (1993), Gallant et al. (1993), and Lin (1997)). Koop et al. (1996) defined generalized impulse 

response functions for the conditional expectation using the mean of the response vector conditional 

on history and a current shock, as compared with a baseline that conditions only on historical 

innovations.  

 

Hafner and Herwartz’s (2006) Volatility Impulse Response Functions (VIRFs) extend the generalized 

impulse response functions framework provided by Koop et al. (1996). Their approach is novel in that 

VIRF explores the conditional variance rather than the conditional mean. Given that GARCH models 

can be viewed as being linear in the squared innovations, and that multivariate GARCH models are 

known to have a VARMA representation with non-Gaussian errors, Hafner and Hewartz (2006) adopt 

this particular structure to calculate conditional expectations of volatility analytically in their VIRF 

analysis.  

 

In our Generalized VIRF (GVIRF), we consider three major news events which act as shocks to the 

volatility of our two series. The onset of the GFC, which we date as 9 August 2007 (GFC1), began 

with the seizure in the banking system precipitated by BNP Paribas announcing that it was ceasing 

activity in three hedge funds that specialised in US mortgage debt. It took one year for the financial 

crisis to come to a head, but it did so on 15 September 2008 when the US government allowed the 

investment bank Lehman Brothers to go bankrupt (GFC2). The date 9 May 2010 marked the point at 

which the focus of concern switched from the private sector to the public sector. By the time the IMF 

and the European Union announced they would provide financial help to Greece, the issue was no 

longer the solvency of banks but the solvency of governments, and this marks the onset of the European 

Sovereign Debt Crisis (ESDC). 

 

The remainder of the paper is as follows. In Section 2 the research methods and data are discussed, 

including volatility impulse response functions, multivariate GARCH models, the regularity 

conditions for BEKK and diagonal BEKK (DBEKK) models, the triangular, Hadamard and full BEKK 

http://www.theguardian.com/business/lehmanbrothers
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models, and diagonal and scalar BEKK models. The empirical results are discussed in Section 3, and 

some concluding remarks are given in Section 4. 

 

2. RESEARCH METHODS AND DATA 

 

Hafner and Herwartz (2006) develop their model by letting t  denote an N-dimensional random vector, 

so that: 

 

ttt P  ,          (1)  

 

where  tttPP ' and t  denotes an iid random vector of dimension N, with independent components, 

mean zero and identity covariance matrix. Hafner and Herwartz assume that t
is measurable with 

respect to the information set available at time t-1, 1tF . Equation (1) implies that   ,01 tt FE   and 

   ttt FVar .1  They note that t  could be the error of a VARMA process. If t  is a multivariate 

GARCH process, then equation (1) may be called a strong GARCH model, according to Drost and 

Nijman (1993). This is convenient because it permits the modelling of news events as appearing in the 

iid innovation, t . They identify t  by assuming that tP  is a lower triangular matrix, which permits 

the use of a Choleski decomposition of t
. They also use the fact that independent news can often be 

identified by means of a Jordan decomposition, which will permit identification when the innovation 

vector is non-normal.  

 

Hafner and Herwartz adopt a multivariate GARCH(p,q) model framework, given by:  
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and use the BEKK model of Baba et al. (1985) and Engle and Kroner (1995), which is a special case 

of equation (2), and is specified as: 
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In equation (3), 0C is a lower triangular matrix, and kiA  and kiG  are NN   parameter matrices.  

 

2.1 Volatility Impulse Response Functions 

 

Hafner and Herwartz (2006) proceed by assuming that, at time t, some independent news is reflected 

in 0 , and it is not specified whether the news is good or bad. The conditional covariance matrix, ,t

is a function of the innovations, ,,....., 11 t the original shock, 0 , and0
. Hafner and Herwartz define 

VIRF as the expectation of volatility conditional on an initial shock and on history, minus the baseline 

expectation that only conditions on history, as given in the following: 

 

   1100 )(,)()(    FvechEFvechEV
ttt        (4) 

 

In equation (4), )( 0tV  is an
*N -dimensional vector.  

 

Hafner and Herwartz consider a VARMA representation of a multivariate GARCH(p,q) model in order 

to find an explicit expression for )( 0tV , and define ).( '
ttt vech    They define the multivariate 

GARCH(p,q) model as a VARMA(max(p,q), p) model: 
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where 
t

tt vechu )(  is a white noise vector. From equation (5), Hafner and Herwartz derive the 

VMA(∞) specification, as follows: 
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where the 
** NN   matrices i  can be determined recursively. The general expression for VIRF is: 
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Hafner and Herwartz (2006) consider a variety of specifications for the baseline shock. The behaviour 

implied by equation (7) is different from traditional impulse response analysis. In (7), the impulse is 

an even, not odd, function of the shock, it is not linear in the shock, and the VIRF depends on the 

history of the process, although this is via the volatility state at the time the shock occurs. The decay 

or persistence is given by the moving average matrices, t , which is similar to traditional impulse 

response analysis.  

 

Further complications arise from the choice of baseline because no natural baseline exists for 0
0  in 

VIRF, as any given baseline deviates from the average volatility state. For example, a zero baseline 

would represent the lowest volatility state and volatility forecasts would increase from this baseline. 

After discussing various alternatives, Hafner and Herwartz (2006) adopt the definition given in 

equation (4). In their original analysis of exchange rates, Hafner and Herwartz examine the impact of 

particular historical shocks that occur in their sample, as well as considering random shocks for their 

estimated model.  

 

In an empirical analysis of US and UK indices,we consider the onset of the GFC, which we date as 9 

August 2007 (GFC1), then the date when the financial crisis came to a head, 15 September 2008, when 

the US government allowed the investment bank Lehman Brothers to go bankrupt (GFC2). The date 

9 May 2010 marked the point at which the focus of concern switched from the private sector to the 

public sector, and this marks the onset of the European Sovereign Debt Crisis (ESDC). We also 

consider random shocks in the empirical analysis.  

 

2.2 Multivariate GARCH Models 

 

The analysis in the paper features applications of both the BEKK and Diagonal BEKK (DBEKK) 

models. The BEKK model was introduced by Baba et al. (1985) and Engle and Kroner (1995). In the 

case of a model with single lags, the BEKK recursion is: 

 

,1
''

11
'' BHBAuuACCH tttt          (8) 
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where H is a matrix of the covariances, and C, A and B are the coefficient matrices. The expression 

above is written in vech format to generate the VIRFs, as shown below: 

 

)()()()()()( 1
'''

11
'''

  tttt HvecBBuuvecAACCvecHvec .   (9) 

 

However, a drawback of using the BEKK model is that there are no regularity conditions or statistical 

properties for full BEKK, as discussed in the next subsection. Chang et al. (2015) discuss stochastic 

processes for univariate and multivariate conditional volatility models, and the following subsections 

2.3-2.5 draw closely on their analysis.  

 

2.3 Regularity Conditions for BEKK and DBEKK 

 

The original multivariate extension of univariate GARCH is given in Baba et al. (1985) and Engle and 

Kroner (1995), while a consideration of leverage effects and the multivariate extension of univariate 

GJR is given in McAleer et al. (2009). The asymmetry conditions for multivariate GJR are given in 

the VARMA-AGARCH model of McAleer et al. (2009). Leverage has typically been presented for 

individual equations only, as defined by Black (1976) for univariate processes using arguments based 

on the debt-to-equity ratio.  

 

In order to establish volatility spillovers in a multivariate framework, it is useful to define the 

multivariate extension of the relationship between the returns shocks and the standardized residuals, 

that is: 

 

,/ ttt h     

 

where th  denotes univariate conditional volatility. A multivariate extension of an equation for the 

conditional mean of financial returns can be written as:  

 

,)|( 1 tttt IyEy          

 

if it is assumed that the three components are 1m  vectors, where m is the number of financial assets. 

The multivariate definition of the relationship between t  and t  is given as: 
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ttt D  2/1
 ,          (10) 

         

where ),....,,( 21 mtttt hhhdiagD  is a diagonal matrix comprising the univariate conditional volatilities. 

Define the conditional covariance matrix of t  as tQ . As the 1m  vector, t , is assumed to be iid for 

all m elements, the conditional correlation matrix of t , which is equivalent to the conditional 

correlation matrix of t , is given by t . Therefore, the conditional expectation of (10) is defined as: 

 

     
2/12/1

tttt DDQ 
 .      (11)  

 

Equivalently, the conditional correlation matrix, t , can be defined as: 

 

2/12/1  tttt DQD .         (12) 

      

Equation (11) is useful if a model of t  is available for purposes of estimating tQ , whereas equation 

(12) is useful if a model of tQ  is available for purposes of estimating t . 

 

Both equations (11) and (12) are instructive for a discussion of asymptotic properties. As the elements 

of tD  are consistent and asymptotically normal, the consistency of tQ  in equation (11) depends on 

consistent estimation of t , whereas the consistency of t  in equation (12) depends on consistent 

estimation of tQ . As both tQ and t  are products of matrices, neither the QMLE of tQ  or t  will be 

asymptotically normal based on the definitions given in equations (11) and (12).  

 

2.4 Triangular, Hadamard and Full BEKK 

 

Without actually deriving the model from an appropriate stochastic process, Baba et al. (1985) and 

Engle and Kroner (1995) considered the full BEKK model, as well as the special cases of triangular 

and Hadamard (element-by-element multiplication) BEKK models. The specification of the 

multivariate model is the same as the specification in equation (8), namely: 
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11
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except that A and B are full, Hadamard or triangular matrices.  

 

Although estimation of the full, Hadamard and triangular BEKK models is available in some standard 

econometric and statistical software packages, it is not clear how the likelihood functions might be 

determined. Moreover, the so-called “curse of dimensionality”, whereby the number of parameters to 

be estimated is excessively large, makes convergence of any estimation algorithm somewhat 

problematic. 

 

Jeantheau (1998) showed that the QMLE of the parameters of the full BEKK model is consistent under 

a multivariate log-moment condition, while Comte and Lieberman (2003) showed that the QMLE are 

asymptotically normal under the assumption of the existence of eighth moments. Specifically, the 

multivariate log-moment conditions are difficult to verify when the matrices A and B are neither 

diagonal nor scalar matrices, and the eighth moment condition cannot be verified for a full BEKK 

model. Therefore, there are as yet no verifiable asymptotic properties of the full, Hadamard or 

triangular BEKK models. 

 

2.5 Diagonal and Scalar BEKK 

 

Consider a vector random coefficient autoregressive process of order one:  

 

tttt   1          (14) 

         

where 

 

t  and t are 1m  vectors, and t  is an mm  matrix of random coefficients, and  

 

t  ~ iid ),0( A , 

t  ~ iid )',0( QQ . 
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Technically, a vectorization of a full (that is, non-diagonal or non-scalar) matrix A to vec A can have 

dimension as high as 22 mm  , whereas the half-vectorization of a symmetric matrix A to vech A can 

have dimension as low as 2/)1(2/)1(  mmmm . 

 

In a case where A is either a diagonal matrix or the special case of a scalar matrix, maIA , McAleer 

et al. (2008) showed that the multivariate extension of GARCH(1,1) from equation (14), incorporating 

an infinite geometric lag in terms of the returns shocks, is given as the diagonal BEKK (DBEKK) or 

scalar BEKK model, namely: 

 

'
1

''
11' BBQAAQQQ tttt     ,       (15) 

    

where A and B are both either diagonal or scalar matrices.  

 

McAleer et al. (2008) showed that the QMLE of the parameters of the diagonal or scalar BEKK models 

were consistent and asymptotically normal, so that standard statistical inference on testing hypotheses 

is valid. Moreover, as tQ  in equation (15) can be estimated consistently, t  in equation (12) can also 

be estimated consistently. 

 

Given the above considerations, we present the results of both full BEKK and DBEKK in the empirical 

analysis that follows. We can be confident about the statistical properties of DBEKK when it is used 

to calculate VIRFs, and the important consideration is whether the two methods and their associated 

VIRFs, have the same implications for our results. If they point to the same conclusions, we can have 

more confidence in the results.  

 

3. EMPIRICAL RESULTS 

 

Summary statistics for the two index return series for the period 3 January 2005 to 31 December 2014, 

giving a total of 2608 valid observations, are shown in Table 1. Both the NYSE and the FTSE return 

series display excess kurtosis and are negatively skewed. The time series plots of the index values are 

shown in Figure 1.  
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Table 2 provides tests of skewness, kurtosis and whether the return series for the two index series are 

normally distributed. The Jarque-Bera (JB) test rejects normality at any standard level of significance. 

For this reason, the Student t distribution is used in the subsequent analysis. We filter the return series 

through an AR(1) process before proceeding to use the subsequent residuals in a multivariate BEKK 

analysis to generate the VIRF, as in Hafner and Herwartz (2006).  

 

Table 3 shows the results of the application of the filters, and Table 4 gives the diagnostics for the 

residuals. The application of the AR(1) model appears to whiten the residuals, and the Ljung-Box Q 

statistics for serial correlation suggest that correlation is not a problem. The Jarque-Bera (JB) test 

strongly rejects normality for the shocks, so we conduct the subsequent analysis using the t-

distribution.   

 

3.1 Results from BEKK analysis 

 

Table 4 shows the results of the application of the BEKK model. We can forecast the volatility and 

correlations for the two series using the BEKK model. We forecast for 100 days at the end of the time 

series and use a window of 400 daily observations to fit the model. The results are shown in Figure 2. 

The recent experience of relatively high volatilities cause the increase in the two forecast volatilities, 

while the correlation tends towards the mean over the sub-sample.  

                                                     

Plots of the VIRFs are shown in Figure 3, Panels A and B.  The VIRF impulse responses for 9 August 

2007, as shown in Panel A, use the variance at that point in time as the baseline. The initial response 

for the NYSE is scaled at just under 10000. When this is compared to the impulse response of the 

FTSE in the UK, the response is even larger at just over 10000.  These have been computed using a 

baseline of the estimated volatility state, so they are excess over the predicted covariance. They can be 

contrasted with the impact of the EU debt crisis on 5 May 2010, in which the NYSE initial response 

is just over 1500, while the FTSE response at the same point in time is nearly 2000, suggesting that, 

as might be expected, the EU debt crisis had a larger impact in London than it had in New York.   

 

These shocks have been predicted using a baseline of zero. The 2007 shocks take a period of about 6 

months to work through, while the 2010 shocks take a longer period of 8-9 months, but this may well 

reflect the choice of a lower baseline. The covariances show a dramatic spike in response to both 

shocks but remain higher for longer, in relation to the 2010 shock, possibly in response to the choice 
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of baseline, as mentioned above. Thus, the choice of baseline remains a key issue in the implementation 

of VIRF analysis. 

 

Panel B of Figure 3 contrasts the 15 September 2008 GFC impact with the 5 May 2010 EU debt crisis 

once again, and the choice of baselines mirrors that in Panel A. The impact of the shock in 2008, at 

the height of the GFC, is relatively higher than previously, in both New York and London. On the 

NYSE it approaches 25000, while on the FTSE it is even higher, approaching 40000, and the shocks 

in both markets take longer to die out than they did in 2007, taking 9 months to return to equilibrium. 

The covariance approaches 20000 and remains at high levels for 6-7 months. The 5 May 2010 graphs 

are the same as in Panel A, and are included for the purpose of a direct comparison.  

 

Given that we are considering VIRF in the context of stock market indices, it seems appropriate to 

consider asymmetry effects via the introduction of the separate consideration of the impact of negative 

shocks. The estimates of the BEKK and asymmetric BEKK-t models are shown in Tables 5 and 7, and 

the eigenvalues from BEKK-t and asymmetric BEKK-t are given in Tables 6 and 9, respectively (for 

the sake of brevity, only the multivariate GARCH and asymmetric terms are reported in the tables). 

The analysis is broadly similar as described above. 

 

Figure 4 shows the VIRF (for the sake of brevity only September 2008 and May 2010 are considered). 

The key difference in the results, when compared to the previous analysis, is that the VIRFs are larger 

and of shorter duration. For example, the NYSE variance increases to 8000 and the FTSE variance 

increases to 15,000 in September 2008. The duration of the response for both 2008 and 2010 is reduced 

to 3 months for both the variances and covariances.  

 

However, in Section 2.3 in this paper noted that we can be confident about the statistical properties of 

DBEKK when it is used to calculate VIRFs, which is not the case for full BEKK.  The key finding is 

whether the two methods and their associated VIRFs have the same implications for the empirical 

results. If the empirical results lead to the same conclusions, we can have greater confidence in the 

empirical results. In Section 3.2 we present the empirical results and VIRFs from a diagonal BEKK 

(DBEKK) analysis.  

 

3.2 Results from DBEKK 
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The DBEKK model has valid statistical properties and regularity conditions, so we can be confident 

in the empirical results. It has to be borne in mind that DBEKK has fewer parameters, so its VIRFs are 

simpler than are those for full BEKK. We estimate DBEKK using the same procedure as discussed 

previously, and use a t-distribution and include asymmetry.  

 

The asymmetric DBEKK model estimated using a t-distribution (DBEKK-t) is much better behaved, 

as can be seen in Table 8. All the coefficients apart from one that are shown in Table 5 are significant. 

The eigenvalues shown in Table 9 are stable, given that all are less than one.  

 

Figure 5 shows the impulse responses generated by the asymmetric DBEKK model estimated using a 

t distribution (DBEKK-t). The results in Panel A reflect the fact that the 9 August 2007 VIRF has a 

baseline calculated on the shock at that point in time, while the 15 September 2008 shock has a baseline 

of zero. The results are consistent with the previous BEKK estimates in that the asymmetric DBEKK 

model produces negative shocks that last for only 3 months in duration. The 2008 shocks again are 

larger in LFTSERET than on NYSERET.  

 

Panel B in Figure 5 is constructed in a similar manner. The 9 August 2007 VIRF is calculated on the 

shock at that point in time, while the 15 September 2008 shock is calculated using a zero baseline. 

Consistent with the previous results, the shocks have a three-month duration, and their relative sizes 

are the same as previously calculated, revealing that both the BEKK and DBEKK results are entirely 

consistent.  

 

In order to complete the analysis, we also calculate a DBEKK model without asymmetries and present 

the results in Tables 10-11 and in Figure 6. All the coefficients for the DBEKK model, without 

asymmetries, as shown in Table 10, are highly significant. The eigenvalues, as shown in Table 11, are 

closer to one than for the DBEKK model with asymmetries, as reported in Table 6, suggesting that the 

standard BEKK model is less stable.  

 

In Figure 6, for purposes of comparison, we depict the VIRFs for the GFC2 period and the Euro debt 

crisis. The VIRFs in Figure 6 are consistent with the previous analysis using the full BEKK model 

without asymmetries. The impact of the 2008 shock is larger in London than in New York, using the 

shock at that point in time as a baseline. A similar pattern is observed in the 2010 Euro-debt shock. 

Once again, we observe, ignoring the asymmetries, the duration of the shock is much longer, and now 
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extends to eighteen months in all figures before equilibrium is re-established. This is more than double 

the durations of the VIRFs recorded for the full BEKK model without asymmetries, but the relative 

durations remain consistent. 

 

4. CONCLUSION 

 

In this paper we have applied the Hafner and Herwartz (2006) Volatility Impulse Response Function 

(VIRF) analysis to ten years of daily return series from the New York Stock Exchange Index, and the 

London Stock Exchange FTSE 100 index, for the period 3 January 2005 to 31 January 2015. An 

attractive feature of VIRF analysis of the effects of shocks on volatility through time is that the shocks 

are treated as endogenous.  

 

However, we also note that the choice of the baseline for the shock makes a considerable difference. 

A useful contribution of this paper is to consider asymmetric effects, which are well documented in 

the empirical analysis of stock markets (see, for example, Engle and Ng (1993)). We showed that the 

impacts of negative shocks are larger, but of shorter duration, than those implied by a symmetric 

treatment of shocks.  

 

Our empirical analysis is based on application of the full BEKK model, for which no verifiable 

asymptotic properties exist, as well as the diagonal BEKK (DBEKK) model, which is not so 

constrained. The empirical results our consistent and suggest that the inclusion of asymmetries is 

important when VIRF analysis is applied to stock market data. It was found that the responses to 

negative shocks are deeper and of shorter duration than the responses to positive shocks. The empirical 

results of both the BEKK and DBEKK models are strongly consistent with each other.  
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Table 1  

 

Summary Statistics for 2005-01-03 - 2014-12-31 (2608 valid observations) 

NYSERET (2608 valid observations) 

 Mean Median Minimum Maximum 

0.000154204 0.000431926 -0.102321 0.115258 

 Std. Dev. C.V. Skewness Ex. kurtosis 

0.0133989 86.8909 -0.417694 10.8634 

 5% Perc. 95% Perc. IQ range Missing obs. 

-0.0202854 0.0179030 0.0103402 0 

 

Summary Statistics for 2005-01-03 - 2014-12-31 (2608 valid observations) 

FTSERET  

 Mean Median Minimum Maximum 

3.92100e-005 0.000475224 -0.105381 0.122189 

 Std. Dev. C.V. Skewness Ex. kurtosis 

0.0148037 377.549 -0.110113 9.87695 

 5% Perc. 95% Perc. IQ range Missing obs. 

-0.0227705 0.0205110 0.0132403 0 
 

 

 

 

 

Table 2 

Tests of Skewness, Excess Kurtosis, and Normality 

 

NYSERET(*100) 

Skewness                -0.417934          Signif Level (Sk=0)   0 

Kurtosis (excess)       10.886570      Signif Level (Ku=0)   0 

Jarque-Bera          12954.814995      Signif Level (JB=0)   0 

FTSERET(*100) 

Skewness                -0.110176          Signif Level (Sk=0)   0.021693 

Kurtosis (excess)        9.898215       Signif Level (Ku=0)   0 

Jarque-Bera          10651.855632      Signif Level (JB=0)   0 
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Table 3 

AR(1) and preliminary GARCH(1,1) analysis of return series 

 

NYSE    

Variables Coefficient t-statistic Significance 

Constant 0.054269041 3.39885 0 

LNYSERET(1) -0.050346740 -2.49472 0.013 

GARCH(1,1)    

C 0.016988318 2.95313 0.003 

A 0.093671095 6.40479 0 

B 0.893694731 61.55474 0 

FTSE    

Constant 4.7248e-004 2.35012 0.019 

LFTSERET(1) -0.0463 -2.27302 0.023 

C 1.7113e-006 2.90809 0 

A 0.0911 5.66440 0 

B 0.9013 52.15142 0 

 

 

 

 

Table 4 

Residual diagnostics  

 

ARCH-LM(1) JB Q(10) Q(20) 

LNYSERET    

8.476 (0.004) 472.482 (0.000) 9.000 (0.437) 23.055(0.235) 

LFTSERET    

0.002 (0.967) 197.09 (0.000) 5.125 (0.823) 17.914(0.528) 
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Table 5 

BEKK 

 

Variable Coefficient Standard 

Error 

t-statistic Significance 

Constant 0.094673045 0.015120103 6.26140 0 

LNYSERET{1} -0.252211378 0.018119393 -13.91942 0 

Constant 0.077323881 0.019894664 3.88666 0 

LFTSERET{1} -0.168032092 0.016587251 -10.13020 0 

C(1,1) -0.097175963 0.044805916 -2.16882 0.03 

C(2,1) -0.264611585 0.034032404 -7.77528 0 

C(2,2) -0.000000180 0.149309283 -1.20715e-

006 

0.999 

A(1,1) 0.021678144 0.041879070 0.51764 0.605 

A(1,2) -0.383455482 0.052098541 -7.36020 0 

A(2,1) -0.222393062 0.035195693 -6.31876 0 

A(2,2) -0.063023626 0.046314167 -1.36079 0.173 

B(1,1) 1.202152703 0.015121227 79.50100 0 

B(1,2) 0.450960714 0.027752985 16.24909 0 

B(2,1) -0.354541888 0.021500835 -16.48968 0 

B(2,2) 0.591348452 0.024731239 23.91099 0 

Shape 7.670707369 0.748939459 10.24209 0 

 

 

 

Table 6 

Eigenvalues from BEKK-t 

 

0.98025 0 0.72696 -0.46101 0.72696 0.46101 

Var JB p-value 

1 147.280 0 

2 69.556 0 

All 216.836 0 
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Table 7 

Asymmetric BEKK-t 

 

Variable Coefficient Standard 

Error 

t-statistic Significance 

A(1,1) -0.022753722   0.060798967      -0.37425   0.708 

A(1,2) -0.405700847   0.065933722      -6.15316   0 

A(2,1)  0.148631275   0.035519302       4.18452   0 

A(2,2) 0.296233075   0.041308360       7.17126   0 

B(1,1) 0.812855262   0.026787787      30.34425   0 

B(1,2) -0.151242974   0.031493570      -4.80234   0 

B(2,1) 0.161414758   0.030535132       5.28620   0 

B(2,2) 0.997063705   0.025611106      38.93091   0 

D(1,1) -0.469369500   0.036937131     -12.70725   0 

D(1,2) -0.393521072   0.089578341      -4.39304   0 

D(2,1) 0.211373660   0.061407304       3.44216   0 

D(2,2) -0.083147397   0.085927903      -0.96764   0.333 

Shape 8.904691765   0.951329821       9.36026   0 

 

  



Allen et al., A multivariate volatility impulse response analysis 

 

 

19 

 

 

Table 8 

Asymmetric DBEKK-t 

 

Variable Coefficient Standard 

Error 

t-statistic Significance 

Mean Model 

LNYSERET 
    

Constant 0.072214891   0.016514826       4.37273   0 

LNYSERET(1)  -0.246671385   0.017309242     -14.25085   0 

Mean Model 

LFTSERET 

    

Constant 0.051226153   0.019264661       2.65907   0.008 

LFTSERET(1) -0.129102063   0.016647036      -7.75526 0 

C(1,1) 0.122517499   0.012861431       9.52596   0 

C(2,1) 0.110032035   0.015744065       6.98879   0 

C(2,2) 0.088019683   0.012074757       7.28956   0 

A(1) -0.024217524   0.033245856      -0.72844   0.466 

A(2) -0.150597648   0.029857611      -5.04386   0 

B(1) 0.959878240   0.004026069     238.41572   0 

B(2) 0.959775221   0.005034805     190.62807   0 

D(1) 0.338891628   0.018669042      18.15260   0 

D(2) 0.283093998   0.025964433      10.90315   0 

Shape 7.623084667   0.738881477      10.31706   0 

 

 

 

Table 9 

Eigenvalues from Asymmetric BEKK-t 

0.94383, 0 0.92489, 0 0.92193, 0 

Var JB p-value 

1 153.216 0 

2 224.941    0 

All 378.157    0 
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Table 10 

DBEKK-t without Asymmetries  

 

Variable Coefficient Standard 

Error 

t-statistic Significance 

Mean Model 

LNYSERET 
    

Constant 0.090305522   0.015901813       5.67895   0 

LNYSERET(1) -0.251500344   0.017757663         -14.16292   0 

Mean Model 

LFTSERET 

    

Constant 0.064511941     0.019540751           3.30141   0.001 

LFTSERET(1)  -0.138112219    0.016239859      -8.50452 0 

C(1,1) 0.120332752   0.014853367       8.10138   0 

C(2,1) 0.079599176   0.013060471 6.09466   0 

C(2,2) 0.092005900   0.013195478       6.97253   0 

A(1) 0.281404331   0.016505582      17.04904   0 

A(2) 0.243537494   0.016343016      14.90162   0 

B(1)  0.954923410    0.005051244     189.04719   0 

B(2) 0.966108091   0.004134165     233.68881   0 

Shape 6.754575562   0.611797521      11.04054   0 

 

 

 

Table 11 

Eigenvalues from BEKK-t 

0.99268,  0 0.99109,  0 0.99107, 0 

Var JB p-value 

1 159.968    0 

2 240.138    0 

All 400.106       0 
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Figure 1 

 

 

Note: NYSE - Blue, FTSE – Black. 

 

 

 

 

 

Figure 2 

 

100 day forecasts based on BEKK 

 

 

  



Allen et al., A multivariate volatility impulse response analysis 

 

 

22 

 

 

Figure 3 

 

VIRF Panel A: Baselines 9 August 2007 and 5 May 2010 

 

 

 

 

 

VIRF Panel B: Baselines 15 September 2008 and 5 May 2010 

 

 

  



Allen et al., A multivariate volatility impulse response analysis 

 

 

23 

 

 

Figure 4 

 

VIRF Asymmetric BEKK (responses to negative price movements) 
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Figure 5 

VIRF Asymmetric DBEKK-t 

 

Panel A 

 

 

 

 

 

Panel B 
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Figure 6 

 

VIRF for GFC2 and Euro Debt crisis using DBEKK-t 

 

 

 

 


